Quiz 13

March 22, 2017

Show all work and circle your final answer.

- 1. Use the alternating series estimation theorem to find the smallest value of n for which the partial sum s_n approximates $\sum_{n=1}^{\infty} \frac{\cos(\pi n)}{n^2} = \sum_{n=2}^{\infty} \frac{(-1)^n}{n^2}$ correct to 2 decimal places. \rightarrow error < .005 $\frac{1}{(\cos n)^2} = \sum_{n=2}^{\infty} \frac{(-1)^n}{n^2}$ The alternating series estimation theorem says $|s-s_n| \le b_{n+1}$ by $|s-s_n| \le b_{n+1}$ and $|s-s_n| \le b_{n+1}$ and $|s-s_n| \le b_{n+1}$ is the smallest value of $|s-s_n| \le b_{n+1}$ and $|s-s_n| \le b_{n+1}$ is the smallest value of $|s-s_n| \le b_{n+1}$ and $|s-s_n| \le b_{n+1}$ is the smallest value of $|s-s_n| \le b_{n+1}$
- 2. Are the following series convergent or divergent? State the test you used and check all conditions.

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n}$$
 This is an alternating series, so use AST:

 $b_n = \frac{1}{\ln n}$

(1) $\frac{1}{\ln (n\pi)} < \frac{1}{\ln n}$, so b_n is decreasing $\sqrt{\frac{(2) \lim_{n \to \infty} \frac{1}{\ln n} = 0}{\ln n}}$

(b) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ (Hint: $\ln n < n$)

 $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ (Hint: $\ln n < n$)

 $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ (Hint: $\ln n < n$)

 $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ (Since $\ln n < n$)

 $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ since $\ln n < n$
 $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ diverges by DCT with $\sum_{n=2}^{\infty} \frac{1}{n}$.